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Abstract. A quantitative analysis of a microscopic model for the intrinsic Josephson effect in high-
temperature superconductors based on interlayer tunneling is presented both within a mean-field BCS
evaluation and a numerically essentially exact Quantum Monte-Carlo study. The pairing correlations in
the CuO2-planes are modelled by a 2D Hubbard model with attractive interaction, a model which accounts
well for some of the observed features such as the short planar coherence length. The stack of Hubbard
planes is arranged on a torus, which is threaded by a magnetic flux. The current perpendicular to the
planes is calculated as a function of applied flux (i.e. the phase), and – after careful elimination of finite-
size effects due to single-particle tunneling – found to display a sinusoidal field dependence in accordance
with interlayer Josephson tunneling. Studies of the temperature dependence of the supercurrent reveal at
best a mild elevation of the Josephson transition temperature compared to the planar Kosterlitz-Thouless
temperature. These and other results on the dependence of the model parameters are compared with a
standard BCS evaluation.

PACS. 74.20.-z Theories and models of superconducting state – 74.20.Mn Nonconventional mechanisms
(spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal
Fermi liquid, Luttinger liquid, etc.) – 71.10.Fd Lattice fermion models (Hubbard model, etc.)

1 Introduction

The high-TC superconductors (HTSC) reveal a number of
unusual properties. One unique example, important both
from a fundamental and from an applied point of view,
is the intrinsic, “microscopic” Josephson effect: a single
crystal like Bi2Sr2CaCu2O8 (BSCCO) consists of natural
stacks of thousands of Josephson junctions, with the CuO2

layers acting as superconducting electrodes and the Bi2O3

layers as insulating (“intrinsic”) barriers, closely packed
on a microscopic length scale (d ≈ 1 Å). This intrinsic
Josephson effect was first discovered for BSCCO–[1,2] and
later confirmed in YBaCuO–[3] materials. From the point
of view of the microscopic theory of the HTSC, this is an
important effect for the c-axis transport and possibly the
pairing theory. [4–6].

A theoretical description of the intrinsic Josephson
current must explain both the Kosterlitz-Thouless-type
of superconductivity in the planes [7–10] and the effective
coupling of these planes on a microscopic basis. In previ-
ous theoretical studies of the intrinsic Josephson effect, the
supercurrent was not investigated on such a rigorous mi-
croscopic basis. Rather, it was studied using macroscopic
electrodynamics employing, for example, empirically
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derived coupled Sine-Gordon equations for stacked
Josephson junctions [11,12].

In this paper, we present numerical evidence based on
Quantum Monte-Carlo (QMC) simulations for the exis-
tence of the supercurrent and the intrinsic Josephson ef-
fect on a purely microscopic basis. The simulated model
consists of a stack of coupled Hubbard planes for which,
in analogy to the experimental situation, each individ-
ual plane is modelled by a two-dimensional (2D) short
coherence-length superconductor [8,9,13], i.e. the 2D at-
tractive Hubbard model.

The attractive (“negative-U”) Hubbard model is the
simplest lattice model for correlated electrons which can
become superconducting. In 2D it has previously been
shown numerically to undergo a Kosterlitz-Thouless tran-
sition into a superconducting s-wave state away from
half-filling [10]. There are definite similarities between
the phase diagram of this simple lattice model and the
phase diagram of the cuprate HTSC: both systems ex-
hibit a phase transition along a certain critical line as a
function of a particular control parameter, which is the
strength of the attractive coupling in case of the Hub-
bard model and the hole (electron) doping in the CuO2

planes for the cuprates. Furthermore, both show a remark-
able crossover along this phase transition line with similar
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consequences: at one endpoint (underdoped/strong-
coupling limit) a pairing description in terms of Bose-
Einstein condensation with “pre-formed” pairs is more
adequate, with a superconductor to insulator critical end-
point, whereas at the other end (overdoped/weak-coupling
regime), a behavior similar to a conventional BCS super-
conductor results, where the system undergoes a normal
metal to superconductor transition.

In the intermediate-coupling regime in 2D, the physics
will be dominated by the interplay between quasi-particles
and bound pairs, which leads to non-trivial behavior:
some basic physical features characterizing this regime
have previously been studied by numerical means, which
showed important deviations from canonical Fermi-liquid
theory [7].

This last point is particularly interesting also in view
of work by Anderson and coworkers [4–6], where it is ar-
gued that the unusual c-axis resistivity data obtained for
cuprate superconductors are the result of the non-Fermi
liquid nature of the in-plane (CuO2) ground state of these
materials. This non-Fermi liquid nature is taken as respon-
sible for disrupting the interplane hopping of electrons so
strongly that single electrons effectively do not hop be-
tween the planes, giving rise to anomalous c-axis transport
properties [5] and to the anomalously large superconduct-
ing transition temperatures for these materials [6]. In this
theory, both these effects depend on the absence of co-
herent single-particle tunneling between the layers which
is blocked as a result of the “orthogonality catastrophe”
being effective as a result of an (assumed) non-Fermi liq-
uid behavior in the planes [4–7]. Also from this point of
view it, therefore, seems natural to study the microscopic
Josephson coupling between attractive-U Hubbard model
planes, which exhibit this non-Fermi liquid characteristic.
However, it should also be stressed that the attractive-
U model has important short-comings, when compared
with the cuprates, especially the absence of the antiferro-
magnetic order at half-filling and the d-wave symmetry of
the superconducting order parameter. This would require
a rather extended model, e.g. where a next-neighbor at-
traction and on-site repulsion are included, leading to the
appropriate magnetic phase as well as d-wave pairs. In
this sense, the present work can be considered as a first
step, which aims at clarifying the basics of the microscopic
Josephson effect. We believe – and this is confirmed by our
numerically essentially exact QMC results – the basics re-
quire a short coherence length superconductor in the plane
and dynamics perpendicular to the plane, introduced by
a vertical hopping.

A simplified mean-field (BCS) description of this
model similar to an earlier version by Tanaka [15] is dis-
cussed in Section 2. This BCS description is similar in
spirit to the conventional Josephson description in that
it introduces, in analogy to the standard treatment, the
phase dependence of the BCS order parameter (which
is constant in a plane) perpendicular to the planes. De-
spite its limitations, this simple mean-field solution illus-
trates some of the physics: in particular, the dependence
of the supercurrent on the microscopic parameters, i.e. the

inter-plane hopping and the on-site interaction U . How-
ever, it cannot account for the Kosterlitz-Thouless nature
of the superconductivity in the planes [8,9,13] and the
corresponding power-law pairing correlations.

Section 3 summarizes the QMC evidence for the in-
trinsic Josephson effect, including a finite-size study with
respect to the number of coupled planes (up to 8). The
influence of model parameters such as the temperature on
the Josephson current is extracted. Of particular inter-
est in view of the above-mentioned “Josephson-pairing”
theory [4–6] is that we find at best a mild elevation (for in-
termediate interaction U = −4tp) of the Josephson transi-
tion temperature compared to the 2D Kosterlitz-Thouless
temperature. Following an argument of Ferrel [14], this
can be understood within a weak-coupling (small U/tp)
BCS framework: in the normal state, single-electron tun-
neling through the barrier between the two planes lowers
the energy of the system. A part of this self-energy is lost
when the planes become superconducting because of the
gap in the quasiparticle spectrum. The lost self-energy is,
however, restored by the tunneling of Cooper pairs and
the resulting Josephson coupling energy. In the Strong,
Clarke and Anderson scenario the self-energy loss due
to single-particle tunneling is assumed to be suppressed
and only the energy lowering due to Copper pair tunnel-
ing is effective. From the Anderson et al. theory point of
view our results can be interpreted as demonstrating that
the non-Fermi liquid characteristics of the attractive-U
Hubbard model are not “robust” enough, to effectively
suppress interplane hopping. Finally Section 4 summarizes
the results.

2 Description of the model and mean-field
evaluation

The superconducting CuO2 planes in x-y-direction
(Fig. 1) are simulated by a 2D Hubbard model with attrac-
tive interaction, which is subjected to periodic boundary
conditions:

Hp = −tp
∑
〈i,j〉‖,σ

(c†i,σcj,σ + h.c.)

− U
∑
i

c†i,↑ci,↑c
†
i,↓ci,↓ − µ

∑
i,σ

c†i,σci,σ. (1)

The summation 〈i, j〉‖ is taken over nearest neighbors in
the planes and tp, U > 0 and µ denote the transfer energy
in the plane, the attractive interaction and chemical po-
tential, respectively. The planes are coupled by a hopping
term in the perpendicular (z-) direction:

H⊥ = −tz
∑
〈i,j〉⊥,σ

c†i,σcj,σ + h.c. (2)

In the z-direction twisted boundary conditions are used.
Figure 1 displays the geometry used in the QMC simula-
tions in which the Hubbard planes are stacked into a torus
and threaded by a magnetic field. The magnetic field B
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~z-direction

plane in x-y-direction

Fig. 1. Schematic view of the used geometry. The coupled
superconducting planes are arranged in a torus threaded with
a local magnetic field B.

in x-direction is confined to the center of the circle. Since
the wave function must be single valued, a particle going

once around the flux line acquires a phase exp

(
2πiΦ

Φ0

)
,

where Φ0 =
h

e
is the elementary flux quantum [17] and

Φ is the threaded flux. Thus, the fermionic operators are
subject to the boundary conditions:

ci+Nzez ,σ = exp

(
2πiΦ

Φ0

)
ci,σ (3)

ci+Nx(y)ex(y),σ = ci,σ. (4)

Here ex,y,z are the lattice vectors of unit length and Nx,
Ny, Nz are the linear lengths in the respective directions.
Through a canonical transformation, the total Hamilto-
nian H = Hp +H⊥ may be written as

H = −tp
∑
〈i,j〉‖,σ

(c†i,σcjσ + h.c.)

− tz
∑
〈i,j〉⊥,σ

(
c†i,σcjσ exp

(
2πi

Nz

Φ

Φ0

)
+ h.c.

)
− U

∑
i

c†i,↑ci,↑c
†
i,↓ci,↓ − µ

∑
i,σ

c†i,σci,σ. (5)

The fermionic operators now satisfy periodic boundary
conditions in both the x- and z-directions. This model
can be interpreted as a torus (shown in Fig. 1) built up
from stacks of coupled Hubbard x-y-planes and threaded
by a B-field in the x-direction. As shown in Section 3, this
geometrical arrangement is directly accessible to QMC
simulations.

The influence of the B-field on the Josephson dc-
current is described by the gauge-invariant form of the

Josephson equation [18,19]:

j = sin

(
θ2 − θ1 −

2e

~

∫
(A · dl)

)
. (6)

Here θ2−θ1 denotes the phase difference at zero magnetic
field of the two planes considered and A gives the vector
potential induced by B.

In our microscopic model the bare interplane hopping
tz in equation 2 is real (i.e. the bare tunneling matrix
elements). In this case θ2 − θ1 = 0, and the sinusoidal
dependence of the tunneling current stems entirely from
the line integral

∫
A · dl = Φ, i.e. the magnetic flux:

j = sin

(
4π

Φ

Φ0

)
· (7)

In order to verify this intrinsic Josephson behavior, the
tunneling current perpendicular to the planes (in z-
direction, Fig. 1) can be calculated, using the relation [20]

〈j〉 =

〈
∂H

∂A

〉
· (8)

This current should display a sinusoidal dependence on

the penetrating flux
Φ

Φ0
, with period

1

2
.

Let us illustrate the idea by considering first a sim-
plified BCS treatment [15], which is based on a Hartree
evaluation of the free energy F and the current

j =

〈
∂H

∂A

〉
∝

∂F

∂(Φ/Nz)
· (9)

Here, the interaction part

Hint = −U
∑
i

c†i,↑ci,↑c
†
i,↓ci,↓ (10)

is simplified to the usual BCS form

Hint ≈ −
∑
i

(
c†i↑c

†
i↓∆+ h.c.−

|∆|2

|U |

)
, (11)

where ∆ = |U |〈ci↑ci↓〉 denotes the pair potential. For an
attractive on-site potential, the Cooper pairs have simple
s-wave symmetry [9]. The usual phase dependence is in-
troduced by writing the pair potential ∆m = ∆eimφ for
the mth plane.

Fourier-transforming in all spatial directions, this BCS
Hamiltonian then can be written:

H =
∑
kσ

ε(k)c†kσckσ −
∑
k

∆(k)[c†k↑c
†
−k↓ + c−k↓ck↑]

+
∑
k

∆2(k)

|U |
, (12)

where k = (kx, ky, kz) is the 3D wavevector and

ε(k) = −2tp[cos(kxa) + cos(kya)]

− 2tz cos

(
kza+

(
2π

Nz

Φ

Φ0

))
(13)
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Fig. 2. Mean-Field Current perpendicular to the planes versus
magnetic flux for tz = 0.05tp and various values of U at 1

2 -filling
〈n〉 = 1 and T = 0 K. The oscillations for U = −1 are due to
the numerical differentiation.

gives the kinetic energy of the electrons. This Hamilto-
nian, which is bilinear in its fermionic operators, can be
diagonalized using a standard Bogoliubov transformation:

H=
∑
k

Ek(α†k↑αk↑+α
†
k↓αk↓)−

∑
k

[Ẽk− ε̃k]+
∑
k

∆2

U
,

(14)

where ε̃k =
1

2
[ε+(k) + ε−(k)], Ẽk =

√
ε̃2k +∆2

and Ek = Ẽk +
1

2
[ε+(k)− ε−(k)]

is the BCS quasiparticle-energy, and

ε+(k) = 2tp(cos(kxa) + cos(kya))

+ 2tz cos

(
kza+

(
2π

Nz

Φ

Φ0

))
− µ

ε−(k) = 2tp(cos(kxa) + cos(kya))

+ 2tz cos

(
kza−

(
2π

Nz

Φ

Φ0

))
− µ. (15)

The free energy can be obtained analytically from H,
yielding:

F =
N∆2

U
−
∑
k

(Ẽk− ε̃k)−2kBT
∑
k

log(1+e−βEk). (16)

The tunneling current j(Φ) can be obtained by numeri-
cally differentiating F (Φ). The parameter ∆ is extracted
by minimizing the free energy, resulting in the BCS-type
gap equation:

∆ =
U

N

∑
k

∆

2Ẽk
(1− f(Ek)− f(E−k)). (17)

A typical result of this simplified analysis is shown in
Figure 2, which illustrates the dependence of the mean-
field Josephson current on the microscopic parameters, tz

and U (here and in what follows all energies are mea-
sured in units of tp). In Figure 2 the current j(Φ/Φ0) is
plotted against the magnetic flux Φ/Φ0 for tz = 0.1tp at
half filling and for various values of U . The current shows

the expected sinusoidal Φ-dependence with period
1

2
. The

maximum current decreases with increasing on-site inter-
action, because the effective mass of a Cooper pair and
thus its localization tendency in a plane scales roughly
with U [15]. If the interaction drops below a critical value,
the supercurrent vanishes above a critical value of Φ. This
behavior can be understood by looking at the energy of
the Bogoliubov quasi-particles, which can be written as

Ek =
√
ε̃2k +∆2(k)− 2tz sin(kza) sin

(
2π

Nz

Φ

Φ0

)
. (18)

If the pair potential ∆ is smaller than the hopping energy
tz, the energy Ek becomes negative for large Φ and, there-
fore, a quasi-particle is excited, which corresponds to the
destruction of a cooper pair. One should notice that for
Φ = 0, i.e. without an applied B-field, Ek is positive for
all finite values of ∆, and BCS superconductivity is stable
for all finite values of U . Similarly, one can extract the
influence of the filling 〈n〉 on the supercurrent j(Φ). As
expected, j(Φ) scales with the number of electrons in the
system.

What goes wrong in this mean-field approach? In 2D
systems, fluctuations drive the critical temperature TC for
the onset of off-diagonal long-range order (ODLRO) down
to zero [22]. There exists, however, a Kosterlitz-Thouless
transition at a temperature TKT , below which there is
quasi-long-range-order (power-law pair correlations) [23].
Due to experimental evidence for intra- and inter-unit-
cell Josephson junctions in YBaCuO single crystals [3],
it is generally believed that the high-TC superconductiv-
ity is intrinsically 2D in CuO2 bilayers, coupled together
by Josephson currents along the c-axis (our z-axis) di-
rection. There is also clear experimental evidence from
the short coherence length (a few lattice parameters) that
the 2D superconductivity is different from the conven-
tional BCS one: the typical radius ( ≈ coherence length)
of a Cooper-pair is comparable to the distance between
pairs, and in this sense the HTSC are in an intermedi-
ate regime between the usual BCS weak-coupling regime
and a regime in which pre-existing pairs Bose condense
[25,26]. QMC simulations [8,9] have correctly established
the short-coherence length Kosterlitz-Thouless type of su-
perconductivity for the 2D attractive Hubbard model. It
is therefore natural, to also apply this numerically rigor-
ous QMC procedure to search for numerical evidence for
Josephson tunneling in a stack of coupled CuO2 planes.

We investigate the attractive Hubbard model using the
numerically exact Quantum Monte-Carlo (QMC) method
for lattices up to roughly 4 × 4 × 4 sites. We wish to
emphasize that this approach has the potential to treat
this strongly correlated system exactly, thus going far
beyond mean-field methods. Furthermore, it provides an
approximation-free, numerically exact ansatz, in contrast
to most standard analytical techniques, and it yields infor-
mation about systems much larger than those accessible
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by exact diagonalization algorithms. In addition, the ap-
plication of this method to the attractive Hubbard model
has the great advantage that the central drawback of
fermion QMC calculations, the so-called “sign problem”,
does not occur. This allows us to perform reliable and
stable calculations over a vast parameter range. The main
technique is the temperature dependent QMC algorithm
in the grand canonical ensemble and its extension to in-
clude a flux, which is largely based on the work of refer-
ence [10].

3 QMC results

The Josephson current is characterized by the sinusoidal

dependence j(Φ) = J0 sin

(
4π

Φ

Φ0

)
. In our actual QMC

simulation (see below), we detect also current contribu-
tions of the form:

js(Φ) = Js sin

(
2π

Φ

Φ0

)
,

which are due to single-particle tunneling. This is a “finite-
size” effect, with limNz→∞ Js = 0, which has to be sepa-
rated from the physical effect we are after.

The current

〈j〉 =

〈
∂H(A)

∂A

〉
(19)

perpendicular to the planes can be calculated using a
finite-temperature QMC technique [21] for the geometry
of Figure 1. The expectation value in equation (19) can
directly be expressed in Green’s functions Gij , which are
accessible to standard QMC routines, i.e.

j = −tz
∑
〈i,j〉zσ

[
c†iσcjσ2πi

Nz

Φ0L
exp

(
−2πi

Φ

Φ0

1

Nz

)
− h.c.

]

= −itz
2π

aΦ0

 ∑
〈i,j〉z ,σ

c†iσcjσ exp(−2πi
Φ

Φ0

1

Nz
)− h.c.

 ,
(20)

where Φ = AzL with L = Nza and a is the lattice param-
eter. Using

〈c†iσcjσ〉 = δij − 〈cjσc
†
iσ〉 = δij −G

σ
ji,

the current becomes:

〈j〉 = −itz
2π

aΦ0

∑
〈i,j〉zσ

[
Gσij exp

(
2πi

Φ

Φ0

1

Nz

)

−Gσji exp

(
−2πi

Φ

Φ0

1

Nz

)]
. (21)

In the first simulation we used a 4 × 4 × 4 lattice with
periodic boundary conditions in all three spatial direc-
tions. Because of the limited system size, the results dis-
play considerable finite-size effects. In order to separate

8× 8× 8
4× 4× 4

U = 0 tz = 0.3tp 〈n〉 = 0.75 β = 8

Φ
Φ0

1
N
x
N
y
j(
Φ

)

10.90.80.70.60.50.40.30.20.10

0.25

0.2

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

-0.25

Fig. 3. Current perpendicular to the plane for the non-
interacting (U = 0) tight-binding model.

these finite-size effects from the physical effect we are af-
ter, we have calculated j(Φ) in the non-interacting (U = 0
in Eq. (5)) tight-binding model for two different sizes
(Fig. 3). The results show, that the finite-size effects are
also sinusoidal, but with period 1, and, indeed (see the
argumentation below), they are related to single-particle
tunneling. Thus, if a Josephson current appears in the
system, j(Φ) should behave like a superposition of two si-

nusoidal curves with period
1

2
and 1. It should, therefore,

be of the following additive form

j(Φ) = Jj sin

(
4π

Φ

Φ0

)
+ Js sin

(
2π

Φ

Φ0

)
, (22)

with the first term referring to the Josephson supercurrent
and the second to the single-particle finite-size effects. The
parameters Jj and Js are the corresponding amplitudes.

The Hubbard model parameters used in the follow-
ing discussion are: U = −4tp, 〈n〉 = 0.75, tz = 0.1tp,
for which the 2D attractive Hubbard planes are known
to show Kosterlitz-Thouless type of superconductivity for
β ∼= 8–10 [8,10].

As seen from Figure 4, which contains the QMC results
(diamonds plus errorbars), the curve (22) fits the calcu-
lated points very well. Thus, we have a first evidence that
our model indeed describes a Josephson junction.

By increasing the number of planes from 4 to 8, the
amplitude, Js, of the single-particle finite-size effects can
be reduced (Fig. 5), and the sinusoidal curve with pe-

riod
1

2
can be seen more clearly. The interpretation of

js(Φ) = Js sin

(
2π

Φ

Φ0

)
as a finite-size contribution, that

is related to the single-particle tunneling, is based on its
scaling behavior as a function of the number of Nz of
planes. The reason for this finite-size behavior of js can
simply be understood: Enhancing the number of coupled
planes, Nz, the phase of the single-particle hoppings in
equation (5) is more effectively averaged out to zero than
for smaller Nz, and Js should scale to zero.
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U = −4 β = 8 tz = 0.3t‖ 〈n〉 = 0.75

φ
φ0

1
N
x
N
y
j(
φ

)

10.80.60.40.20

0.03

0.02

0.01

0

-0.01

-0.02

-0.03

Fig. 4. Current perpendicular to the plane for the 4×4 (planar
size) ×4 (number of planes) system QMC-results: diamonds
plus errorbars, the dotted line shows the interpolated curve
j(Φ).

U = 0
U = −4
U = −4

〈n〉 ≈ 0.75 β = 8 tz = 0.3t‖

Φ
Φ0

1
N
x
N
y
j(

Φ
)1

0
−

2

10.80.60.40.20

0.8

0.4

0

-0.4

-0.8

Fig. 5. Current perpendicular to the plane for the 4 × 4 × 8
(8 coupled planes in Fig. 1) system. The dashed line shows the
U = 0 behavior.

β = 2 4× 4× 4 U = −4 〈n〉 ≈ 0.75

Φ
Φ0

1
N
x
N
y
j(

Φ
)1

0
−

3

0.50.450.40.350.30.250.20.150.10.050

1.6

1.2

0.8

0.4

0

Fig. 6. Current perpendicular to the plane for βtp = 2.

β = 6 4× 4× 4 U = −4 〈n〉 ≈ 0.75

Φ
Φ0

1
N
x
N
y
j(

Φ
)1

0
−

2

0.50.450.40.350.30.250.20.150.10.050

0.2

0

-0.2

-0.6

-1.0

-1.4

-1.8

Fig. 7. Current perpendicular to the plane for the same pa-
rameters as in Figure 6, however for a three times lower tem-
perature, i.e. βtp = 6.

On the other hand, Jj , the Josephson amplitude,
should scale with the number of planes Nz, a relation,
which is clearly obeyed by our QMC data in Figures 4

and 5. In Figures 4 and 5,
1

Nz
j(Φ) is plotted against

Φ

Φ0
for 4× 4× 4 and 4× 4× 8 systems, respectively. The lines
indicate the interpolated curve. As expected, the magni-

tudes of
1

Nz
Jj in Figures 4 and 5 are equal (Jj = 0.0079 is

used in both figures). The 2D attractive Hubbard model
for U = −4 and 〈n〉 = 0.75 shows a Kosterlitz-Thouless
transition at βctp ≈ 10 from the superconducting to a
normal phase [9,10]. This transition should be reflected
in coupled Hubbard planes, and the Josephson current
should break down at some β = βc. The temperature de-
pendence of j allows an estimation of βc. In Figures 6,
7 and 8, j(Φ) is plotted for β = 2, 6 and 7 respectively.
Figure 4 gives the corresponding plot for β = 8. For β = 2,
j(Φ) is sinusoidal with period 1, i.e. no Josephson current
appears, and the system is not superconducting. For β = 6
and β = 7, Jj becomes finite, but is still small compared
with the value of Jj for β = 8. The J values for β = 10
(not plotted) have been found to be essentially unchanged
compared to β = 8. This growing current (with satura-
tion around β ≈ 8) is due to interlayer tunneling of local
pairing of electrons. For temperatures β ≤ 8, exponential
not power-law pairing correlations are present in the 2D
Hubbard model. Accordingly, preliminary results indicate
that for β < 8 the current does not scale with the number
of sites in a plane. A rough estimate for the Josephson
transition temperature is, therefore, β ∼= 8, at best a mild
elevation compared to the single plane. Within BCS Fer-
rel showed that the shift in ground-state energy due to
tunneling is the same in the normal and superconducting
stats [14]. The physical significance of this result is that
the ground-state energy of the junctions in its supercon-
ducting state is neither favored nor disfavored, relative to
the normal-state energy by the presence of the tunneling
barrier. Therefore, in this BCS limit, we do not expect
any elevation in the transition temperature.
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β = 7 4× 4× 4 U = −4 〈n〉 ≈ 0.75
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Fig. 8. Current perpendicular to the plane for βtp = 7.

4 Conclusions

In this paper, we have presented a model for intrinsic
Josephson couplings on a microscopic length-scale. It is
based on coupled Hubbard planes with attractive interac-
tions, which are threaded by a local magnetic field. The
field dependence of the current j(Φ) perpendicular to the
planes is calculated using numerically rigorous Quantum
Monte-Carlo simulations. To extract some of the physi-
cal ideas, in particular the dependence on the microscopic
parameters U/tp and tz/tp, we first reviewed the mean-
field BCS approximation. The maximum current jmax
increases with decreasing on-site interaction U and in-
creasing hopping energy tz. At small values of U , for which
the pair potential ∆ is smaller than tz, the superconduc-
tivity is unstable for finite values of the magnetic flux Φ.
In mean-field, the Hubbard model reduces to an effective
BCS type Hamiltonian, which is not capable of correctly
describing salient features of the 2D superconductivity
(short coherence length, Kosterlitz-Thouless transition) in
the CuO2 planes of the HTSC’s.

To overcome these shortcomings and to present a rigor-
ous proof of the intrinsic Josephson couplings, we have ex-
tracted j(Φ) from the, in principle (apart from controlled
statistical error [21]), exact Quantum Monte-Carlo sim-
ulations. The results show a sinusoidal behavior of j(Φ).
A careful discussion of the finite-size scaling of the cur-
rent clearly reveals that it is the behavior of a Joseph-
son supercurrent. The Josephson current drops to zero
for β < 6, at U = −4 and a filling 〈n〉 = 0.75. Due to
finite-size effects, this transition is smeared out and, there-
fore, we can only approximatively determine the transition
temperature from superconducting to the normal state at
β ∼= 8. These facts give clear evidence that the attractive
Hubbard model is capable of describing the Josephson
effect in HTSC’s on microscopic length scale. Careful stud-
ies of the parameter dependence of the maximum super-
current are under way. These studies should enable us to
systematically extract the influence of material properties
on the Josephson current, and thus should be useful to

optimize the intrinsic Josephson effect for specific appli-
cations.
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